Optimized Scroll Compressor for Green Heat Pump Unit in Retrofit Buildings

Bachir.Bella@emerson.com

Grant Agreement No 308816

FP7-Energy-2012-308816 www.greenhp.eu

The GreenHP Partners

Austrian Institute of Technology, Project Coordinator

Fraunhofer Insitute for Solar Energy Systems, Germany

Royal Institute of Technology,

Sweden

Emerson Climate Technologies GmbH, Germany

AKG Group, Germany

Ziehl-Abegg, Germany

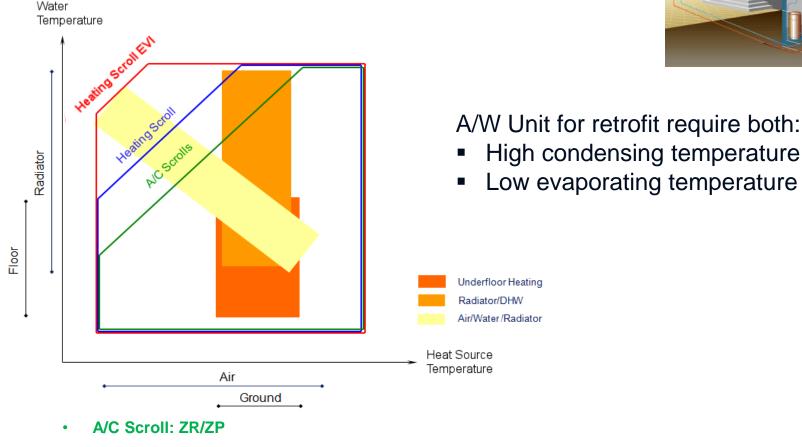
European Heat Pump Association, Belgium

Gränges AB, Sweden

Hesch Schröder GmbH, Germany

Project Info

- Description: The GreenHP project investigates a new highly efficient heating system based on high-capacity air/water heat pumps for retrofitting multi-family houses and commercial buildings in cities.
- Targets: The project aims at developing a new system level (interaction with electric grids, other energy systems and different system components) as well as a new heat pump unit and component units (refrigerant, compressor, evaporator, fan and air duct, condenser)


FP7-Energy-2012-308816

Application Heat Pump Unit for large retrofitting buildings in average climate <u>System</u>: Air/water output up to 100 kW

High Efficiency Prototype Heating capacity 30kW at (A -10/W 55) Capable of water heating up to 65° C COP (A7/W55) \geq 3.5 <u>SCOP*</u> \geq 3.1

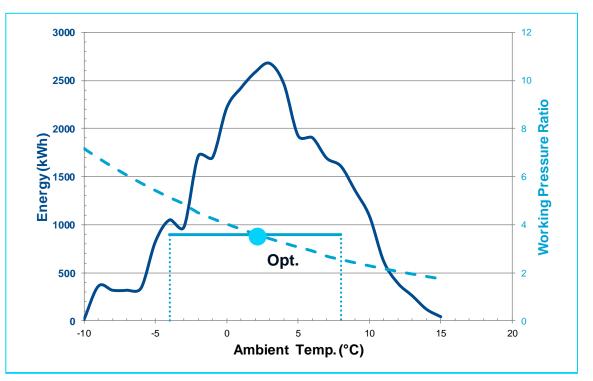
Low GWP refrigerant with Charge target 1 kg GWP < 150 High Efficiency <u>Reduced Oil charge</u> in the compressor

Air/Water and Water/Water Heat Pump Radiators & Underfloor Heat Distribution

Heating Scroll: ZH**K4E

Heating Scroll EVI: ZH**KVE

•



Heat Pump

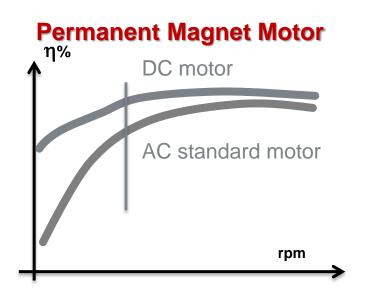
EMERSON

Climate Technologies

Compressor Design Scroll Design

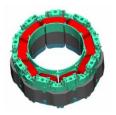
V_i Compression Start

V_f Compression End

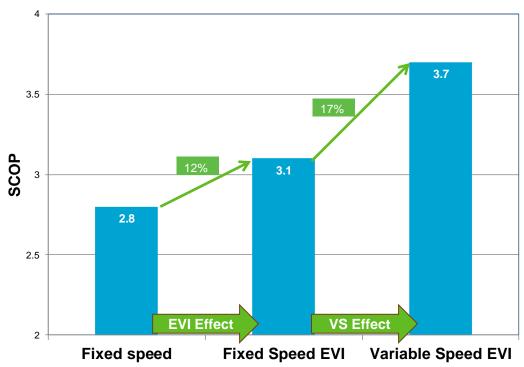

 $BIVR = \frac{Vi}{Vf}$

- Heating Energy weighted to operation hours according to EN14825
- Compressor working pressure ratio varying with ambient Temperature:
 - Pressure ratio P.R. = 3.6 results in Optimized BIVR design for SCOP
- 30 kW Maximum Heating Load at A-10/W55 (-18 ° C Evap./58° C Cond.) determines a Displacement of 96 cc

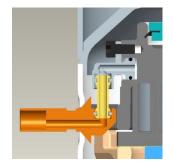
Optimization elaborated for average climate



Compressor Design DC motor Variable Speed

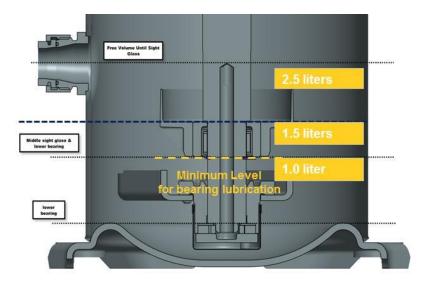

- More efficient over a large speed range
- Some efficiency decrease at full load related to inverter losses
- Requires special design consideration:
 - Inverter generates electro-magnetic interference (EMI)
 - Necessitates piping circuits to ensure Oil return
 - Requires special consideration to avoid resonances
 - Oil delivery required for speeds less than 2400 rpm

- DC Motor with higher Efficiency over a wide range
- Speed range 1800-7200rpm (30-120Hz)



Compressor Design Variable Speed and EVI Benefits for SCOP

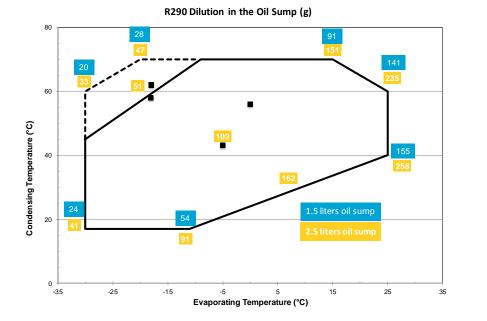
SCOP - Simulation (W55)



- EVI (Enhanced Vapour Injection) Gives +12% SCOP
- with Variable Speed another +17% SCOP
- (Variable Speed) + (EVI Scroll) give an increase of +30% in SCOP

Compressor Design Oil Charge Reduction

- Oil charged inside the compressor depends:
 - Internal oil management inside compressor
 - Amount mixed with refrigerant and circulating inside the system
- GHP compressor targeting 1.0 liter (Similar size standard Scroll have 2.5 liters)


ZHW0961U New design to decrease oil level:

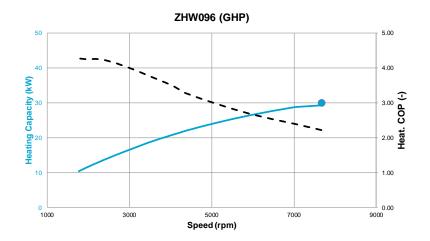
- Lower bearing designed to the lowest position inside the shell
- Optimize Suction gas port position to decrease the oil pump out from the compressor

Minimum oil required is 1 liter, higher charge will be only for system management

Oil Charge Reduction Impact on Refrigerant Charge

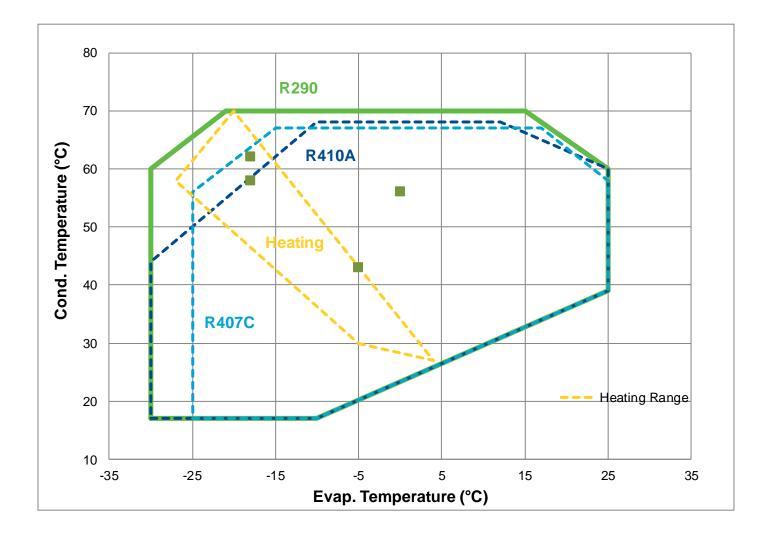
	Refrigerant Diluted in Oil			
Oil Charge	25/40°C	0/56°C	-18/58°C	Oil Reduction
	(g)	(g)	(g)	(%)
2.5 I	258	83	44	-
1.5 I	155	50	27	-40%
1.0 I	103	33	18	-60%

The refrigerant diluted varies with the operating conditions:

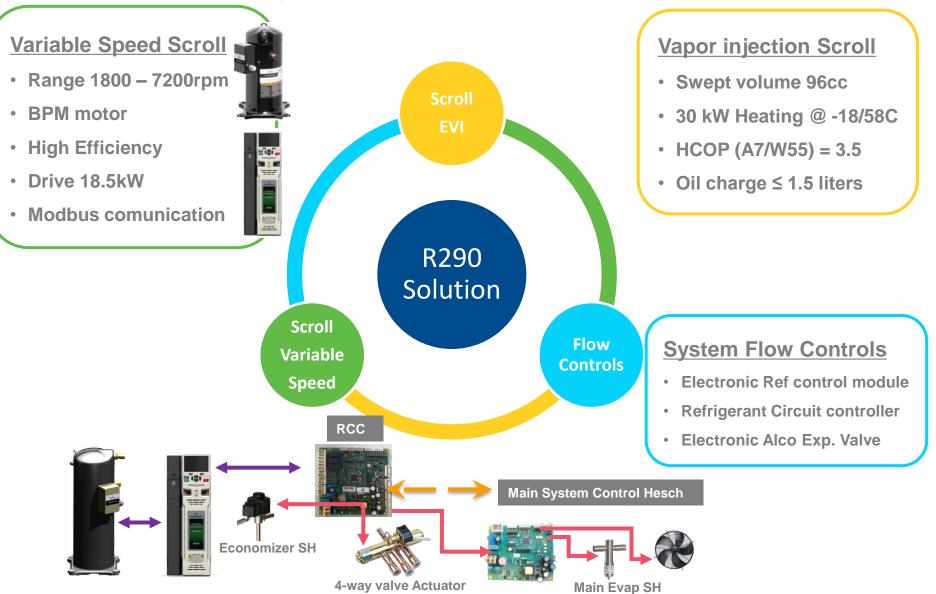

- Higher the evaporating temp., higher is the oil mass diluted
- Lower the evaporating temp., lower is the oil mass diluted
- Lower is the gas return temperature higher is the oil mass diluted

- Refrigerant decreases from 83 g to 33 g at rating Conditions (0/56° C)
- Maximum R290 diluted 155 g w/ 1.5 liters and 103 g w/ 1.0 liter

ZHW096 Performances


	Comp. Cond.	Target	Achiev.
Max Heating Capacity	(-18/58°C)	30 kW	28.2 kW
COP (A7/W55)	(0/56°C)	3.50	3.50
SCOP (EN14825)	Avg. Climate	3.1	3.3

Heating capacity and COP calculated according to EN14825 average climate and based on compressor performances



R290 allows to reach extreme conditions

Overview Package R290 Solution

Conclusions

- New compressor design developped for GHP Unit
- Design Optimized to meet GHP Targets:
 - Optimized Scroll Design
 - Variable Speed Technology with BPM motor
 - Oil Charge Reduction
- Results:
 - Combination R290 and Vapor Injection allow high water temperature at extreme conditions (Retrofit heating system)
 - Compressor High Efficiency (SCOP =3.3, HCOP (A7/W55) = 3.50)
 - Oil charge Reduction by at least 40%

Thank you for your Attention !

Contact

Project Coordination

ANDREAS ZOTTL

Engineer Energy Department Sustainable Thermal Energy Systems

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550-6309 | F +43(0) 50550-6679 andreas.zottl@ait.ac.at | http://www.ait.ac.at